## MASS SPECTRAL STUDIES OF AROMATIC AZA ANALOGUES OF JUVABIONE\*

R. K. MAHAJAN, (Mrs) Neelam GUPTA and (Mrs) Satinder K. UPPAL

Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla – 171005, India

Received April 4th, 1986

Mass spectra of title compounds I - VI have been studied with a view to comparing the fragmentation pattern of secondary amides in different structural environments.

The aromatic aza analogues of juvabione I - VI whose mass spectra are reported in this communication were prepared by treatment of respective benzylamines with 3-methylbutanoyl chloride or 3-methyl-2-butenoyl chloride<sup>1</sup>. These compounds are insect juvenile hormone analogues and their mass spectra have been studied with a view to comparing the fragmentation pattern of secondary amides in different structural environments. Gilpin<sup>2</sup> has discussed the mass spectra of a variety of aliphatic amides but only one secondary amide with a  $\gamma$ -hydrogen atoms in the alkyl chain, N-butyloctadecanamide, has been reported.

$$\begin{array}{ccccccc} R^2 & O \\ & & & \parallel \\ R^1 - CH - NH - C - R^3 \end{array}$$
  
*I*, R<sup>1</sup> = C<sub>6</sub>H<sub>5</sub>; R<sup>2</sup> = CH<sub>3</sub>; R<sup>3</sup> = -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>  
*II*, R<sup>1</sup> = 4-ClC<sub>6</sub>H<sub>4</sub>; R<sup>2</sup> = CH<sub>3</sub>; R<sup>3</sup> = -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>  
*III*, R<sup>1</sup> = C<sub>6</sub>H<sub>5</sub>; R<sup>2</sup> = H; R<sup>3</sup> = -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>  
*IV*, R<sup>1</sup> = C<sub>6</sub>H<sub>5</sub>; R<sup>2</sup> = CH<sub>3</sub>; R<sup>3</sup> = -CH = C(CH<sub>3</sub>)<sub>2</sub>  
*V*, R<sup>1</sup> = 4-ClC<sub>6</sub>H<sub>4</sub>; R<sup>2</sup> = CH<sub>3</sub>; R<sup>3</sup> = -CH = C(CH<sub>3</sub>)<sub>2</sub>  
*VI*, R<sup>1</sup> = C<sub>6</sub>H<sub>5</sub>; R<sup>2</sup> = H; R<sup>3</sup> = -CH = C(CH<sub>3</sub>)<sub>2</sub>  
*VI*, R<sup>1</sup> = C<sub>6</sub>H<sub>5</sub>; R<sup>2</sup> = H; R<sup>3</sup> = -CH = C(CH<sub>3</sub>)<sub>2</sub>

The most characteristic peaks of these compounds are given in Table I. An intense molecular ion peak (base peak; 100%) is observed in compound IV while all other compounds give molecular ions of moderate intensity (15-38%). The molecular ion is accompanied by  $[M + 1]^+$  peak of 5-15% intensity in all compounds. The compounds II and V also show  $[M + 2]^+$  peak of about 30% intensity of molecular ion peak due to the presence of  $3^7$ Cl.

٦

<sup>\*</sup> Part VI in the series: Juvenile Hormone-Like Substances; Part V: J. Agric. Food Chem., submitted.

Compounds I-III give an ion *a* at  $m/z [M - 42]^+$  which can be rationalized in terms of McLafferty type rearrangement (Scheme 1). No such peak is observed in IV-VI because this rearrangement cannot take place due to the presence of double bond conjugated with carbonyl group. Compounds IV-VI show an intense  $[M - 15]^+$  ion peak due to the loss of terminal methyl group while compounds I-IIIgive  $[M - 15]^+$  ion peak of very low intensity. It seems that a considerable amount of rearrangement takes place before the loss of terminal methyl group.



SCHEME 1

TABLE I

Location of peaks (in m/z) and relative abundance in the mass spectra of compounds I - VI

| Ion                                                                                                                                | Ι                                  | II                                  | III                                | IV                                  | V                                     | VI                                    |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|
| [M] <sup>+</sup>                                                                                                                   | 205/31                             | 239/35                              | 191/15                             | 203/100                             | 237/38                                | 189/38                                |
| $[M + 1]^+$                                                                                                                        | 206/7                              | 240/4                               | 192/11                             | 204/15                              | 238/7                                 | 190/10                                |
| $[M + 2]^+$                                                                                                                        |                                    | 241/10                              |                                    |                                     | 239/13                                |                                       |
| $[M - 15]^+$                                                                                                                       | 190/4                              | 224/4                               | 176/4                              | 188/29                              | 222/89                                | 174/98                                |
| $[M - 42]^+$                                                                                                                       | 163/13                             | 197/12                              | 149/19                             |                                     |                                       | _                                     |
| $R^{2}$ $\downarrow (+)$ $R^{1} - C = NH_{2}$ $\downarrow (+)$ $R^{2a}$                                                            | 120/40<br>105/100                  | 154/30<br>139/100                   | 106/67<br>91/100                   | 120/21<br>105/44                    | 154/21<br>139/87                      | 106/32<br>91/100                      |
| $\begin{array}{c} (+) \\ O \equiv C - R^{3} \\ [C_{6}H_{5}]^{+} \\ [C_{5}H_{5}]^{+} \\ [C_{5}H_{4}C^{1}]^{+} \\ R^{3} \end{array}$ | 85/6<br>77/67<br>65/7<br><br>57/45 | 85/16<br>77/66<br><br>99/4<br>57/89 | 85/9<br>77/78<br>65/29<br><br>55/8 | 83/68<br>77/36<br>65/4<br><br>55/46 | 83/100<br>77/30<br><br>99/21<br>55/36 | 83/100<br>77/41<br>65/42<br><br>55/44 |

<sup>*a*</sup> R = H or Cl.

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]

٦

The most abundant ion (base peak) in I-III is formed by the rupture of alkyl--nitrogen bond to give a relatively stable benzylium ion, or perhaps the tropylium ion<sup>3.4</sup> b, which is accompanied by the expected  $[C_5H_5]^+$  ion at m/z 65 by the loss of  $C_2HR_2$ , and  $[C_3H_3]^+$  ion at m/z 39 by a further loss of  $C_2H_2$ . Compounds IV-VI also show the formation of ion b but its intensity is relatively lower in IVand V while it is a base peak in VI. The other plausible fragment ion from the alkyl--nitrogen bond rupture bearing the charge on nitrogen atom is not formed at all, Scheme 2.



SCHEME 2

Another important fragmentation path which can be envisaged in the above compounds is through the rupture of acyl-nitrogen bond. This can take place in two different ways to form different ions: (i) Cleavage of C—N bond to form ion c in which the positive charge is retained by oxygen atom. This is the most abundant ion (base peak) observed in compounds IV - VI because in these cases the ion can be resonance stabilized. Loss of CO from c results in the formation of ion d (Scheme 3). The relative intensity of the ion c in I-III is relatively smaller because here it cannot be resonance stabilized. (ii) A double  $\alpha$ - and C—N cleavage with hydrogen rearrangement to form ion e in which the positive charge is retained by nitrogen

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]



## SCHEME 3

atom. This type of fragmentation is observed more in I-III than in IV-VI because of preferential formation of the ion c in IV-VI (Scheme 4). Yet another significant fragmentation observed in all the compounds I-VI is the loss of side chain from the aromatic ring to form the ion  $[C_6H_5]^+$ , m/z 77, and other ions corresponding in empirical composition to  $[C_3H_3]^+$ ,  $[C_4H_2]^+$ ,  $[C_4H_3]^+$ , and  $[C_4H_5]^+$  known to be associated with the decomposition of the phenyl ring<sup>5</sup>. A direct rupture of the carbonyl-alkyl bond also seems to take place to form ions of m/z 57 in I-III and of m/z 55 in IV-VI.



SCHEME 4

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]

١

The spectra of compounds II and V show significant ions at m/z 138, 104, and 103. The ion at m/z 138 can be attributed to the loss of hydrogen from the ion b. The ions at m/z 104 and 103 suggest that the halogen cleavage takes place predominantly after the initial rupture of the alkyl-nitrogen bond (loss of 35 from m/z 139 and 138).

The authors are grateful to Prof. B. J. Heywood, May and Baker Ltd., research laboratories, England, for recording of mass spectra.

## REFERENCES

- 1. Mahajan R. K., Gupta Neelam, Uppal Satinder K.: This Journal 50, 690 (1985).
- 2. Gilpin J. A.: Anal. Chem. 31, 935 (1959).
- 3. Meyerson S.: J. Am. Chem. Soc. 85, 3340 (1963).
- 4. Beynon J. H., Saunders R. A., Williams A. E.: *The Mass Spectra of Organic Molecules*, p. 127. Elsevier, Amsterdam 1968.
- 5. Budzikiewicz H., Djerassi C., Williams D. H.: Mass Spectrometry of Organic Compounds, p. 81. Holden-Day, San Francisco 1967.

Note added in proof: In Scheme 2 for  $-CH \equiv CR_2$  should read  $-CH \equiv CR^2$ .